skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quandt, C Alisha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. The genusPseudogymnoascusincludes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species ofPseudogymnoascus—P. russussp. nov.,P. irelandiaesp. nov., andP. ramosussp. nov.—isolated from Antarctic soils. These species represent the firstPseudogymnoascustaxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades:P. irelandiaein clade K,P. ramosusin clade Q, andP. russusin clade B. These results provide further evidence of the extensive undescribed diversity ofPseudogymnoascusin high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi. 
    more » « less
    Free, publicly-accessible full text available March 21, 2026
  3. The genusPseudogymnoascusincludes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species ofPseudogymnoascus—P. russussp. nov.,P. irelandiaesp. nov., andP. ramosussp. nov.—isolated from Antarctic soils. These species represent the firstPseudogymnoascustaxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades:P. irelandiaein clade K,P. ramosusin clade Q, andP. russusin clade B. These results provide further evidence of the extensive undescribed diversity ofPseudogymnoascusin high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi. 
    more » « less
    Free, publicly-accessible full text available March 21, 2026
  4. Abstract Antarctic soils are unique from those found nearly anywhere else on Earth yet can still harbor a broad diversity of microorganisms able to tolerate the challenging conditions typical of the continent. For these reasons, microbiologists have been drawn to Antarctica for decades. However, our understanding of which microbes thrive in Antarctic soils and how they to do so remains limited. To help resolve these knowledge gaps, we analyzed a collection of 200 archived Antarctic soils—from Livingston Island on the Antarctic Peninsula to Cape Hallett in northern Victoria Land. We analyzed the prokaryotic and fungal communities in these soils using both cultivation-independent marker gene sequencing and cultivation-dependent approaches (microbial isolation), paired with extensive soil geochemical analyses. Our cultivation-independent analyses indicate that colder, saltier, and drier soils harbor less diverse communities of bacteria and fungi, distinct from those found in soils with less challenging conditions. We also built a culture collection from a subset of these soils that encompasses more than 50 bacterial and fungal genera, including cold-tolerant organisms, such asCryobacteriumandCryomyces. By directly comparing the diversity of our cultured isolates against our cultivation-independent data, we show that many of the more abundant Antarctic taxa are not readily cultivated and highlight bacterial and fungal taxa that should be the focus of future cultivation efforts. Together, we hope that our collection of isolates, the comprehensive data compiled from the cultivation-independent analyses, and our geochemical analyses will serve as a community resource to accelerate the study of Antarctic soil microbes. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  5. Free, publicly-accessible full text available November 1, 2025
  6. Adams, Byron J (Ed.)
    This data package offers comprehensive insights into Antarctic soil microbial diversity and composition. From 2003 to 2023, a total of 186 samples were collected from diverse locations spanning the Antarctic Peninsula to East Antarctica, representing a wide range of environmental gradients and climatic conditions. Soils were stored at -20°C to preserve their integrity for downstream analyses. This data package integrates cultivation-independent sequencing of prokaryotic and fungal communities alongside a robust cultivation-dependent culture collection to enable direct comparisons across microbial diversity assessment methods. Accompanying geochemical, physicochemical, and environmental parameters provide critical context for biogeographical analyses, offering a valuable resource for studying microbial adaptations and community dynamics in extreme Antarctic environments. 
    more » « less
  7. Fungal pathogens commonly originate from benign or non-pathogenic strains living in the natural environment. The recently emerged human pathogen,Candida auris,is one example of a fungus believed to have originated in the environment and recently transitioned into a clinical setting. To date, however, there is limited evidence about the origins of this species in the natural environment and when it began associating with humans. One approach to overcome this gap is to reconstruct phylogenetic relationships between (1) strains isolated from clinical and non-clinical environments and (2) between species known to cause disease in humans and benign environmental saprobes.C. aurisbelongs to theCandida/Clavisporaclade, a diverse group of 45 yeast species including human pathogens and environmental saprobes. We present a phylogenomic analysis of theCandida/Clavisporaclade aimed at understanding the ecological breadth and evolutionary relationships between an expanded sample of environmentally and clinically isolated yeasts. To build a robust framework for investigating these relationships, we developed a whole-genome sequence dataset of 108 isolates representing 18 species, including four newly sequenced species and 18 environmentally isolated strains. Our phylogeny, based on 619 orthologous genes, shows environmentally isolated species and strains interspersed with clinically isolated counterparts, suggesting that there have been many transitions between humans and the natural environment in this clade. Our findings highlight the breadth of environments these yeasts inhabit and imply that many clinically isolated yeasts in this clade could just as easily live outside the human body in diverse natural environments and vice versa. 
    more » « less
  8. Free, publicly-accessible full text available December 1, 2025
  9. This paper describes and illustrates five new species of Gloeandromyces (Ascomycota, Laboulbeniales) associated with tropical American bat flies (Diptera, Streblidae). These are Gloeandromyces cusucoensis sp. nov. from Trichobius uniformis in Costa Rica and Honduras, G. diversiformis sp. nov. from Strebla wiedemanni in Costa Rica, G. plesiosaurus sp. nov. from Trichobius yunkeri in Panama, G. pseudodickii sp. nov. from Trichobius longipes in Ecuador and Panama, and G. verbekeniae sp. nov. from Strebla galindoi in Ecuador and Panama. The description of these five species doubles the number of known species in the genus. Morphological characteristics, host association, and a three-locus (18S nuc rDNA, 28S nuc rDNA, TEF1) phylogenetic reconstruction support placement of these taxa in the genus Gloeandromyces. Three of the new species are polymorphic; they have multiple morphotypes that grow in specific positions on the host integu ment: G. diversiformis f. diversiformis, f. musiformis, and f. vanillicarpiformis; G. plesiosaurus f. asymmetricus and f. plesiosaurus; and G. verbekeniae f. verbekeniae and f. inflexus. Finally, a dichotomous key to all species and morphotypes is presented. 
    more » « less